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Steps to an ultrarelativistic jet

Create the compact remnant

The remnant and angular momentum as a central engine
Jet launch in the baryon-poor polar regions

Jet propagation through the surrounding material
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Gamma-ray burst?






Central Engines

* Hyper-accreting black
hole or magnetar?

* Hidden in collapsars,
exposed in neutron star
mergers

* EM-dark NSBH mergers
* Also GW-GRB time delay
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Jet l[aunch mechanism
-3 options (2 BH, 1 NS)
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Jet collides with
ambient medium
(external shock wave)
Very high-energy
008 gamma rays
gasdenes (> 100 GeV)

Colliding shells emit gamma rays
(infernal shock wave model)
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Lizo (1 keV - 10 MeV) (erg/s)

Jet propagation - low-luminosity gamma-ray
bursts
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Flux (erg cm=2 s71)

Jet propagation
a continuum
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Jet propagation - Fast Blue Opt|cal Transients
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Jet propagation - Choked GRBs and neutrinos
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FIG. 1. Left panel: The choked jet model for jet-driven SNe. Orphan neutrinos are expected since electromagnetic emission
from the jet is hidden, and such objects may be observed as hypernovae. Middle panel: The shock breakout model for LL
GRBs, where transrelativistic shocks are driven by choked jets. A precursor neutrino signal is expected since the gamma-ray
emission from the shock breakout occurs significantly after the jet stalls (e.g., [26]). Right panel: The emerging jet model

for GRBs and LL GRBs. Both neutrinos and gamma-rays are produced by the successful jet, and both messengers can be
observed as prompt emission.
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Advancing our understanding this decade

All of this relies on advances in modeling of supernova, kilonovae, neutron star
mergers, etc, and all of the input physics

* Why
e Origin of elements, neutrinos, GWSs, and more
* Particle acceleration from mildly to ultrarelativistic
e Tests of fundamental physics

* How
* Detect, identify, and localize transients from their earliest detectable signals
* High energy
* Signals across the EM spectrum and in other messengers provide complementary
diagnostics
* Nearby events are key (see SN 1987A, GW170817, GRB 980425, etc)

* Ensure observations of externally identified signals (e.g. Rubin relativistic transients)
 Non-detections matter

With immediate broadband follow-up



As outlined in the Decadal

«7.5.3.1

*J.5.1

While ground-based measurements by observatories large and small are essential, several key
capabilities that must be sustained to enable time-domain and multi-messenger astrophysics can only be
realized in space. The most important of these are wide-field gamma-ray and X-ray monitoring, and rapid
and flexible imaging and spectroscopic follow-up in the X-ray, ultraviolet (UV), and far-infrared (far-IR).

Space-based platforms provide access to those bands that are undetectable from the ground:
gamma-rays, X-rays, ultraviolet, and the mid- to far-IR. Historically, these bands have proven crucial to
transient event detection, as well as event characterization and classification. A future system needs to
include the following features: (1) detection capability at X-ray/gamma-ray energies with near 4 sr
coverage; (2) prompt event localization at the few arcsecond level or better; (3) rapid-slewing for follow-
up imaging and spectroscopy at X-ray, ultraviolet, and IR wavelengths; (4) long-term monitoring in these
same bands; and (5) a data system capable of issuing fast alerts to the community with all essential
information.

Rather than advocate for a specific mission in this field, the panel suggests instead that NASA

create a coordinated strategic program in time-domain astrophysics that provides the capabilities
described above. notentiallv canitalizine on the international missions that are onerational. These conld he



A true all-sky high energy monitor

Capabilities Detection or full coverage of every
* 4pi e Supernova (optical, MeV neutrinos,
* Long, contiguous livetime GWs)
e ~1 keV — 10 MeV * Gamma-ray burst
e ~10’ localizations * High energy neutrino
* At least in X-rays * Magnetar
* Prompt alerts * Tidal disruption events

* Time-domain monitoring of the entire
bright X-ray sky

* Rare and surprise transients



« What are or will be the most pressing scientific questions for TDAMM
In the next several years?

 What separates CCSN from gamma-ray bursts?
* The origin of high energy neutrinos?
 All of the neutron star merger science

« Which capabilities (top level) are needed to address them?
 4pi X-ray monitors with large contiguous livetime intervals

* How well does the current mission fleet address them?
* It doesn’t capture emission from the ‘missing’ link of nearby X-ray events

* Which avenues of inquiry will be most ripe for discovery in the next
few years?
 Build the Decadal-recommended NASA TDAMM Program in a coherent
Mmanner

« What collaboration between the ground and space can be done to
maximize the science?

« All-sky high energy monitor partnered with IceCube and Rubin (and friends)




Backup



Rates and the origin of neutrinos

* [IGRBs ~102-103 Gpc3yrt

* For comparison, IGRBs ~10-1-10% CCSN ~10° Murase et al. 2019 PRL 123

* ~1 high-energy neutrino detection
* IceCube Gen 2: Nominal improvements begin 2030, full upgrade 2037
e <300 Mpc; 10-100/yr
* [ceCube: Now, ~5x less sensitive than Gen 2
e 130 Mpc; 1-10/yr

* Then why haven’t we seen them already?

* Association o Ry, * At * (Q/4m) where Q is the worse localization solid angle
* Optical SNe and neutrinos: At~ 108s, Q ~0.01, R... ..~ 102 gives ~2 sigma evidence

» 22signal nal

* SNe SBO and neutrinos: At~ 10% Q ~0.01, Ry,,.,,~ 10% gives >5 sigma every time

Non-EM messengers will generally have limited spatial precision, so time is
absolutely critical for robust association and all multimessenger science



